1. Consider the series $\sum_{k=2}^{\infty} \frac{3^{k}}{5^{k}+2 k}$
1.1 Show that the series converges.
1.2 Find a value N so that $R_{N} \leq 10^{-10}$.
(Hint: Compare R_{N} to a geometric series $\sum_{k=N+1}^{\infty} r^{k}$)
1.3 Approximate the value of the series accurate within 10^{-10} by using Maple to calculate S_{N}.
2. Do the following series converge or diverge?

$$
\text { (a) } \sum_{j=5}^{\infty} \frac{j!}{(j+2)!} \quad \text { (b) } \sum_{k=2}^{\infty} \frac{2 k}{7 k+18}
$$

