Let
$$I = \int_{1}^{\infty} \frac{7}{\sin(x)^2 + x^3} dx$$
.

- 1. Show that I converges.
- 2. Find an upper bound for $I_2 = \int_{\epsilon}^{\infty} \frac{7}{\sin(x)^2 + x^3} dx$.
- 3. Approximate $I_1 = \int_1^6 \frac{7}{\sin(x)^2 + x^3} dx$ using M_{1000} .

How close is this approximation to the exact value of l_1 ?

4. How close is your value for M_{1000} to the actual value of 1?

T. Ratliff (Wheaton College)