Let $\mathcal{I}=\int_{-\pi}^{\pi} e^{\sin (x)} d x$.
Approximate \mathcal{I} accurate within

1. 0.01 using a right sum
2. 0.001 using a trapezoid sum
3. 0.0001 using a midpoint sum

Let $\mathcal{I}=\int_{0}^{2} e^{x^{2}} d x$

1. Plot the integrand to verify that it is monotone over the interval of integration.
2. Calculate L_{1500} and R_{1500}. How close are these to the actual value of \mathcal{I} ?
3. Use Theorem 3 to find a value for n such that $\left|\mathcal{I}-L_{n}\right|$ is guaranteed to be less than 0.10 . How does this compare to \#2? Explain.
4. Will M_{100} overestimate or underestimate \mathcal{I} ? How about T_{100} ?
5. Calculate M_{100} and T_{100}. How close are these to the actual value of \mathcal{I} ?
6. What does Theorem 3 tell you about $\left|\mathcal{I}-M_{100}\right|$? How does this compare to \#5? Explain.
