1. Let $I=\int_{0}^{1} x^{4} \sin \left(x^{2}\right) d x$
(a) Use a left sum to approximate $/$ accurate within 0.001 of its actual value.
(b) Use an infinite series to approximate $/$ accurate within 0.001 of its actual value.
2. Find the volume of the solid formed when the graph of $f(x)=\frac{3 x}{\sqrt{1+9 x^{6}}}$ for $0 \leq x \leq \frac{\pi}{4}$ is rotated about the x-axis.
3. Do the following converge or diverge?
(a) $\int_{2}^{\infty} x^{3} e^{-x^{2}} d x$
(c) $\sum_{k=1}^{\infty}(-1)^{k} \frac{3 k^{2}}{8 k^{3}-8}$
(b) $\int_{1}^{\infty} \frac{3^{x}}{4^{x}+7} d x$
(d) $\sum_{j=1}^{\infty} \frac{3 j^{2}}{j!}$
4. Show that $\int_{4}^{\infty} \frac{3 x^{3}}{2 x^{5}+\ln (x)} d x$ converges and find a definite integral I_{1} that approximates $/$ accurate within 0.01 .
5. Show $\sum_{k=4}^{\infty} \frac{3 \cos (k)}{2 k^{2}+\sin (k)^{2}}$ converges absolutely and find an N such that S_{N} approximates $/$ accurate within 0.01 .
6. Let $I=\int_{0}^{4} \sqrt{1+\left(x e^{-x^{2}}\right)^{2}} d x$.

Explain how I can be interpreted as:

- a one-dimensional measure corresponding to a function $f(x)$,
- a two-dimensional measure corresponding to a function $g(x)$,
- and as a three-dimensional measure corresponding to a function $h(x)$.

Be sure to give formulas for $f(x), g(x)$ and $h(x)$.

