Find the power series expansion for f(x) at x₀ = 0.
1.1 f(x) = sin(x)

1.2
$$f(x) = \cos(x)$$
 Hint: $\frac{d}{dx}\sin(x) = \cos(x)$

2. 2.1 Find the power series expansion for $sin(x^2)$

2.2 Use this to find
$$\int \sin(x^2) dx$$

2.3 Approximate $\int_0^1 \sin(x^2) dx$ accurate within 10^{-1}

T. Ratliff (Wheaton College)

Math 104 Calculus II

April 17, 2009 1 / 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Use series to approximate the value of the following integrals accurate within 0.001.

$$1. \int_0^1 \cos(x^3) \ dx$$

2.
$$\int_{0}^{1/4} \frac{1}{1+x^{4}} dx$$
 Hint: $\frac{1}{1+x^{4}} = \frac{1}{1-(-x^{4})}$
3. $\int_{0}^{1} xe^{x^{3}} dx$

-

DQC

・ロト ・日下・ ・ ヨア・