```
Let \(f(x)=\sin (x)\) and
let \(P_{k}(x)\) be the \(k\) th order Taylor polynomial for \(f(x)\) at \(x_{0}=0\).
```

1. Find $P_{1}(x), P_{3}(x)$, and $P_{5}(x)$.
2. Verify your answer by graphing the polynomials and $f(x)$ on the same set of axes.
3. Use $P_{5}(x)$ to find an approximation for $\sin (2)$.

Will this be larger or smaller than the actual value of $\sin (2)$?
4. Now find $P_{19}(x)$. Hint: You don't actually need to take all of the derivatives.

