Determine if the following series converge conditionally, converge absolutely, or diverge.
If the series converges, approximate its value accurate within 10^{-5}.

1. $\sum_{j=3}^{\infty}(-1)^{j+1} \frac{1}{j \ln (j)}$
2. $\sum_{m=10}^{\infty}(-1)^{m+1} \frac{6^{m}}{m!}$
3. $\sum_{t=1}^{\infty}(-1)^{t+1} \frac{4}{\cos (\sqrt{t})+2}$
4. $\sum_{k=3}^{\infty}(-1)^{k+1} \frac{\ln (k)}{k^{3}+1}$
