1. Consider the series
$$\sum_{k=2}^{\infty} \frac{3^k}{5^k + 2k}$$

- (a) Show that the series converges.
- (b) Find a value N so that $R_N \leq 10^{-10}$.

(Hint: Compare
$$R_N$$
 to a geometric series $\sum_{k=N+1} r^k$)

- (c) Approximate the value of the series accurate within 10^{-10} by using Maple to calculate S_N .
- Do the following series converge or diverge?

(a)
$$\sum_{k=2}^{\infty} \frac{2k}{7k+18}$$
 (b) $\sum_{j=5}^{\infty} \frac{j!}{(j+2)!}$