1. Show that $I=\int_{1}^{\infty} x^{3} e^{-x^{2}} d x$ converges by evaluating the integral and finding its exact value.
2. Let $I=\int_{0}^{\pi / 4} \sqrt{1+4 x^{2} \sec \left(x^{2}\right)^{4}} d x$
(a) Find a value of n so that M_{n} approximates I accurate within 0.001.
(b) Interpret I as an area, as a volume, and as an arc length.
3. Let R be the region bounded by $y=-x^{2}-x+6$ and the x-axis. Find volume when R is rotated about the line $y=-2$
