Let $C$ be the curve traced out by $y=\sin (x)$.

1. Find a parametrization $r(t)$ of $C$ as a curve in $\mathbb{R}^{3}$.
2. Calculate the curvature $\kappa$ of $C$ as a function of $t$ by hand.
3. Find the curvature corresponding to the points $x=\frac{\pi}{4}, \frac{\pi}{2}$, and $\frac{5 \pi}{4}$.
4. Find the unit tangent $T(t)$ and principal unit normal $N(t)$ at the same points as you did in \#3.
5. At each of the three points, plot $C$ and the circle of radius $\frac{1}{\kappa}$ centered at $r(t)+\frac{1}{\kappa} N(t)$. This is the osculating circle.
