Let C be the curve traced out by $y = \sin(x)$.

- 1. Find a parametrization r(t) of C as a curve in \mathbb{R}^3 .
- 2. Calculate the curvature κ of *C* as a function of *t* by hand.
- 3. Find the curvature corresponding to the points $x = \frac{\pi}{4}, \frac{\pi}{2}$, and $\frac{5\pi}{4}$.
- 4. Find the unit tangent T(t) and principal unit normal N(t) at the same points as you did in #3.
- 5. At each of the three points, plot *C* and the circle of radius $\frac{1}{\kappa}$ centered at $r(t) + \frac{1}{\kappa}N(t)$. This is the *osculating circle*.