A. Let $F(x, y)=\langle M(x, y), N(x, y)\rangle=\langle y,-x\rangle$.

Let \mathcal{C} be the unit circle oriented counterclockwise and let R be the region enclosed by \mathcal{C}. Calculate the following.

1. $\int_{\gamma} M d x+N d y=\int_{\mathcal{C}} F(x, y) \cdot d r$
2. $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$
B. Use Green's Theorem to evaluate $\int_{\mathcal{C}} F(x, y) \cdot d r$ in each case.
3. $F(x, y)=\left\langle y^{2}+x^{2}, x+y\right\rangle$
\mathcal{C} is the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$
4. $F(x, y)=\left\langle y^{2}+x, x+y\right\rangle$
\mathcal{C} is the circle of radius 1 centered at the origin
5. $F(x, y)=\langle x-y, x+y\rangle$
\mathcal{C} is the circle of radius 3 with center $(1,0)$
