Math 102 - Calculus I with Economics Applications
Reading Assignments
Be sure to check back, because this may change during the semester.
(Last modified:
Tuesday, April 26, 2005,
3:10 PM )
I'll use Maple syntax for mathematical notation on this page.
All numbers indicate sections from Calculus from Graphical, Numerical, and Symbolic Points of View, Second Edition by Ostebee/Zorn.
For Friday January 28
Section 1.1 Functions, Calculus Style
Section 1.2 Graphs
To read : The Section How to Use This Book: Notes for Students
beginning on page xvii. All of Sections 1.1 and 1.2.
Reading Questions : Let f(x)=x2
- How is the graph of y=f(x)+3 =x2+3 related to the graph of y=f(x)? Why?
- How is the graph of y=f(x+3) =(x+3)2 related to the graph of y=f(x)? Why?
- Which of f(x), f(x)+2, and f(x+2) are even? odd?
For Monday January 31
Appendix E Algebra of Exponentials and Logarithms
Section 1.3 A Field Guide to Elementary Functions
To read : All of Appendix E, and through the section "Logarithm functions" of Section 1.3. Be sure to understand the definition of the logarithm function base b.
Reading Questions :
- How are the functions f(x)=3x and g(x)=log3(x) related?
- Solve for x in the equation: log2(x) + log2(x3)=12
For Wednesday February 2
Appendix F Trigonometric Functions
Section 1.3 A Field Guide to Elementary Functions
To read : All of Appendix F and finish Section 1.3.
Be sure to understand the definitions of sin(x) and cos(x) in terms of the unit circle.
Reading Questions :
- What are the domain and range of sin(x)?
- What is 120 degrees equal to in radians?
- What is the period of the cosine function? How can you tell?
For Friday February 4
Section 1.4 Amount Functions and Rate Functions: The Idea of the Derivative
To read : Through Example 4. Be sure understand the
section "Rates, amounts, and cars" beginning on page 36.
Reading Questions :
Look at the graphs of P(t) and V(t) in Figure 1 on page 37.
- Is the derivative of P positive or negative at t=5 ? Explain.
- Is the second derivative of P positive or negative at t=5 ? Explain.
- Give a value of t where the derivative of P is zero.
For Monday February 7
Section 1.5 Estimating Derivatives: A Closer Look
To read : All. Make sure to understand Examples 3 and 4.
Reading Questions :
- What does the term "locally linear" mean?
- Explain why the derivative of f(x)=|x| does not exist at x=0.
For Wednesday February 9
Section 1.6 The Geometry of Derivatives
To read : All. Be sure to understand the definition of a stationary
point and the difference between local and global maxima and minima.
Reading Questions :
Look at the graph of f ' in Example 2:
- Where does f have stationary points? Why?
- Where is f increasing? Why?
- Where is f concave up? Why?
For Friday February 11
Section 1.7 The Geometry of Higher Order Derivatives
To read : All. Think about why the Second Derivative Test makes sense.
Reading Questions :
Use the graphs of f, f ', and f ' ' in Figure 3 on page 67.
- By looking at the graph of f '', how can you tell where f is concave up and concave down?
- By looking at the graph of f ', how can you tell where f is concave up and concave down?
For Monday February 14
Section 2.1 Defining the Derivative
To read : All. We'll talk about the formal defintion of the
derivative in detail during class.
Reading Questions :
- Let f(x)=x3. Find the slope of the secant line from x=-2 to x=4.
- For a function f, what does the difference quotient
( f(a+h) - f(a) )/ h measure?
- Let f(x)=x3. What is the average rate of change of f
from x=-2 to x=4?
For Wednesday February 16
Work on Project 1 today. No Reading Assignment.
For Friday February 18
Section 2.2 Derivatives of Power Functions and Polynomials
To read : Through Theorem 4 on page 97. Be sure to understand Examples 1 and 2.
Reading Questions :
- What is the derivative of f(x)=x3?
- Let f(x)=x1/3 (i.e. the cube root of x). Use the graph of y=f(x) to
explain why f'(x) does not exist at x=0.
For Monday February 21
The Big Picture before Exam 1. No Reading Assignment for today.
For Wednesday February 23
Section 2.3 Limits
To read : Through Theorem 6. Be sure to understand Example 4
and the defintions of left-hand and right-hand limits.
Reading Questions :
- Let g(x)=(x2 - 9)/(x-3) as in Example 2.
- Is g(x) defined at x=3? Why or why not?
- What is limx->3 g(x) ? Why?
- Is f(x)=|x| continuous at x=0? Why or why not?
For Friday February 25
Section 2.4 Using Derivative and Antiderivative Formulas
To read : All. Be sure to understand the definition of an antiderivative
and Theorems 8, 9, and 10.
Reading Questions :
- Explain in your own words what an antiderivative of a function g(x) is.
- How many antiderivatives does f(x)=3x2 have? Why?
For Monday February 28
Section 2.6 Derivatives of Exponential and Logarithmic Functions; Modeling Growth
To read : All. Be sure to understand Theorem 12 and the section "Proof by
picture" that follows.
Reading Questions :
- What is the 82nd derivative of f(x)=ex?
- Do exponential functions model compound interest well? Explain.
For Wednesday March 2
Section 2.7 Derivatives of Trignometric Functions: Modeling Oscillation
To read : All. Be sure to understand the section "Differentiating the sine: an
analytic proof".
Reading Questions :
- What is limh->0 ( cos(h) - 1) / h?
- What is limh->0 sin(h) / h?
- Why do we care about the limits in the first two questions?
For Friday March 4
Section 3.1 Algebraic Combinations: The Product and Quotient Rules
To read : All. Be sure to understand Examples 3, 4 and 5.
Reading Questions : Explain what is wrong with the following calculations and fix them.
- f(x)=x2 sin(x).   f'(x)=2x cos(x)
- g(x)=sin(x) / (x2 + 1).   g'(x) = cos(x) / (2x)
For Monday March 7
Section 3.2 Composition and the Chain Rule
To read : Through Example 12. We'll consider evidence for why the Chain Rule is
true during class.
Reading Questions : Explain what is wrong with the following calculations and fix them.
- f(x)= sin(x2).   f'(x)=cos(2x)
- g(x)=( sin(x) )3.   g'(x)=3( cos(x) )2
For Wednesday March 9
Section 3.2 Composition and the Chain Rule
Reread the section, but no Reading Questions for today.
For Friday March 11
More fun with differentiation. Review Sections 3.1 and 3.2, but no Reading Assignment.
For March 14 - 18
Spring Break. Surprisingly, no Reading Assignment.
For Monday March 21
Section 4.3 Optimization
To read : All. Read Examples 2, 3, and 4 carefully.
Reading Questions :
- At which x-values can a continuous function f(x) achieve its maximum or minimum value
on a closed interval [a,b]?
- What is the difference between an objective function and a constraint equation?
For Wednesday March 23
Differentiation Exam today. No Reading Assignment.
For Friday March 25
Section 4.7 Building Polynomials to Order: Taylor Polynomials
To read : All. Be sure to understand Examples 5 and 8.
Reading Questions :
- Why would you want to find the Taylor polynomial of a function?
- In your own words, briefly explain the idea of building the Taylor polynomial
for a function f(x).
For Monday March 28
Section 4.7 Building Polynomials to Order: Taylor Polynomials
Reread the section, but no Reading Questions for today.
For Wednesday March 30
Work on Project 2. No Reading Assignment.
For Friday April 1
Section 4.8 Why Continuity Matters
To read : All. Be sure to understand the statement of the Intermediate
Value Theorem.
Reading Questions :
- What are the hypotheses of the Intermediate Value Theorem?
- What is the conclusion of the Intermediate Value Theorem?
For Monday April 4
The Big Picture before Exam 2. No Reading Assignment.
For Wednesday April 6
Section 4.9 Why Differentiability Matters: The Mean Value Theorem
To read : All. Be sure to understand the statement of the Mean Value Theorem
and the section "What the MVT says".
Reading Questions :
- What are the hypotheses of the Mean Value Theorem?
- What is the conclusion of the Mean Value Theorem?
- Explain the MVT using "car talk" (that is, using velocity).
For Friday April 8
Section 5.1 Areas and Integrals
To read : All. Be sure to understand the definition of the integral, Example 2,
and the section "Properties of the integral" beginning on page 306.
Reading Questions :
- What does the integral of a function f from x=a to x=b measure?
- Is the integral of f(x)=5x from x=-1 to x=3 positive or negative? Why?
For Monday April 11
Section 5.2 The Area Function
To read : All. Be sure to understand the definition of the area function
and Examples 2, 3, and 4.
Reading Questions :
- Let f be any function. What does the area function Af(x) measure?
- Let f(t)=t and let a=0. What is Af(1)?
For Wednesday April 13
Section 5.3 The Fundamental Theorem of Calculus
To read : All, but you can skip the proof of the FTC in the section. We'll look
at a different approach in class.
Reading Questions :
- Find the area between the x-axis and the graph of f(x)=x3 + 4 from x=0
to x=3.
- Does every continuous function have an antiderivative? Why or why not?
For Friday April 15
Section 5.3 The Fundamental Theorem of Calculus
To read : Re-read the section for today.
Reading Questions :
- If f(x)=3x-5 and a=2, where is Af increasing? decreasing? Why?
- How would your answer change if a=0?
For Monday April 18
Section 5.4 Finding Antiderivatives: The Method of Substitution
To read : All. Be sure to understand Examples 8, 9, and 10.
Reading Questions :
- Explain the difference between a definite integral and an indefinite integral.
- What are the three steps in the process of substitution?
- Substitution attempts to undo one of the techniques of differentiation. Which one is it?
For Wednesday April 20
Section 5.4 Finding Antiderivatives: The Method of Substitution
Reread the section, but no Reading Questions for today.
For Friday April 22
Section 5.6 Approximating Sums: The Integral as a Limit
To read : All. Be sure to understand the definition of a Riemann sum
and Example 3.
Reading Questions :
- Explain, in your own words, the idea of Riemann sums for approximating integrals.
- If f(x) is decreasing on [a,b], will Ln underestimate or overestimate
the integral of f from a to b? How about Rn?
For Monday April 25
The Big Picture before Exam 3. No Reading Assignment.
For Wednesday April 27
Section 5.6 Approximating Sums: The Integral as a Limit
Reread the section, but no Reading Questions for today.
For Friday April 29
Section 2.5 Differential Equations; Modeling Growth
To read : All.
Reading Questions :
- Why would one want to study differential equations?
- Show that y(x)=x(1/3) is a solution to the differential equation y'(x)=1/(3y2).
For Monday May 2
Section 2.5 Differential Equations; Modeling Growth
Reread the section, but no Reading Questions for today.
Math 102 Home |
T. Ratliff's Home
Maintained by Tommy Ratliff, ratliff_thomas@wheatoncollege.edu
Last modified:
Tuesday, April 26, 2005,
3:10 PM