Let $I=\int_{1}^{\infty} \frac{7}{\sin (x)^{2}+x^{3}} d x$.

1. Show that I converges.
2. Find an upper bound for $I_{2}=\int_{6}^{\infty} \frac{7}{\sin (x)^{2}+x^{3}} d x$.
3. Approximate $I_{1}=\int_{1}^{6} \frac{7}{\sin (x)^{2}+x^{3}} d x$ using M_{1000}.

How close is this approximation to the exact value of I_{1} ?
4. How close is your value for M_{1000} to the actual value of I ?

