Let $$I = \int_{1}^{\infty} \frac{7}{\sin(x)^2 + x^3} \ dx$$. - 1. Show that *I* converges. - 2. Find an upper bound for $I_2 = \int_6^\infty \frac{7}{\sin(x)^2 + x^3} dx$. - 3. Approximate $I_1=\int_1^6 \frac{7}{\sin(x)^2+x^3} \ dx$ using M_{1000} . How close is this approximation to the exact value of I_1 ? - 4. How close is your value for M_{1000} to the actual value of I? October 22, 2004 - p.1