Let $I=\int_{0}^{2} \sqrt{x^{2}+1} d x$.
What does I have in common with the following?

1. $f(x)=\frac{\left(x^{2}+1\right)^{\frac{1}{4}}}{\sqrt{\pi}}$
2. $X(t)=\left(t+7 \pi, \frac{t^{2}}{2}-6\right)$
3. $g(x, y)=\left(\sqrt{x^{2}+y}, x-y\right)$ and $X(t)=(t, 1)$
4. The region bounded by the unit circle in the $x y$-plane and $h(x, y)=$

$$
\begin{aligned}
& -2 \arccos (x) \frac{1}{\sqrt{\frac{(\arccos (x))^{2}}{\pi^{2}}+1}} \pi^{-3} x^{-1} \frac{1}{\sqrt{1-x^{2}}}-2 \sqrt{\frac{(\arccos (x))^{2}}{\pi^{2}}+1} \pi^{-1} x^{-2} \\
& -\arcsin (y) \frac{1}{\sqrt{\frac{(\arcsin (y))^{2}}{\pi^{2}}+1}} \pi^{-3} y^{-1} \frac{1}{\sqrt{1-y^{2}}}-\sqrt{\frac{(\arcsin (y))^{2}}{\pi^{2}}+1 \pi^{-1} y^{-2}}
\end{aligned}
$$

