1. Find the volume of the solid bounded above by $z = 25 - x^2 - y^2$ and below by the xy-plane.

2. Find the volume of the solid that lies below z = 10 + 2x + 3y and above the region in the xy-plane bounded by the polar curve $r = \sin(\theta)$.

3. Find the volume of the solid that lies under the upper hemisphere $z = \sqrt{25 - x^2 - y^2}$, above the *xy*-plane, and inside the cylinder $x^2 + y^2 = 5x$.

4. Evaluate $\int \int_R y e^x dA$ where R is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$.