1. Find the volume of the solid bounded above by $z=25-x^{2}-y^{2}$ and below by the $x y$-plane.

2. Find the volume of the solid that lies below $z=10+2 x+3 y$ and above the region in the $x y$-plane bounded by the polar curve $r=\sin (\theta)$.

3. Find the volume of the solid that lies under the upper hemisphere $z=\sqrt{25-x^{2}-y^{2}}$, above the $x y$-plane, and inside the cylinder $x^{2}+y^{2}=5 x$.
4. Evaluate $\iint_{R} y e^{x} d A$ where R is the region in the first quadrant enclosed by the circle $x^{2}+y^{2}=25$.
