1. In each case, approximate the length of the curve C within 0.001 of its actual value.
(a) C is the graph of $y=\ln (x)$ from $x=1$ to $x=8$
(b) C is the graph of $y=\sin (x)$ from $x=0$ to $x=\pi$
(c) C is the graph of $y=\sqrt{16-x^{2}}$ from $x=0$ to $x=4$
2. A company manufactures corrugated tin for roofing by taking a flat piece of tin and pressing it until it is wavy. In fact, it looks strikingly like a sine wave. If the company wants to produce corrogated pieces that are 10 feet wide, approximately how wide should the flat pieces be to begin with?
