Do the following series converge conditionally or converge absolutely? Calculate S_{1000}. How close does this approximate the value of the series?

1. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{5}}{n^{6}+17}$
2. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k^{2}+1}$
3. $\sum_{k=1}^{\infty} \frac{\cos (k)}{k^{4}+1}$

Show that the following series converge and approximate each series accurate within 0.001 .

1. $\sum_{n=1}^{\infty}(-1)^{n} \frac{4 n}{n!+n+2}$
2. $\sum_{k=2}^{\infty} \frac{7-\sin (k)}{k^{2}+14 k}$
