Math 236 - Multivariable Calculus
Reading Assignments - September 2001

Be sure to check back, because this may change during the semester.
(Last modified: Monday, August 20, 2001, 7:21 PM )

I'll use Maple syntax for mathematical notation on this page.
All numbers indicate sections from Multivariable Calculus by Ostebee/Zorn.


For September 7

Section 1.1 Three-dimensional space
  • To read : All
  • Be sure to understand : The section "Equations and their graphs"

Appendix A Polar coordinates and polar curves

  • To read : All
  • Be sure to understand : The section "Trading polar and rectangular coordinates"

Email Subject Line : Math 236 9/7 Your Name

Reading Questions :

  1. Give an example of an equation whose graph in 3-space is a cylinder that is unrestricted in the y-direction.
  2. Let P be the point in the plane with polar coordinates (1, Pi/2). Give another pair of polar coordinates for P.

For September 10

Section 1.2 Curves and parametric equations
  • To read : All
  • Be sure to understand : Examples 1, 4, and 7. The section "Tricks of the trade"

Email Subject Line : Math 236 9/10 Your Name

Reading Questions :

  1. Is every parametric curve the graph of a function y=f(x)? Why or why not?
  2. Give a parametrization of the line connecting the points P=(-1,2) and Q=(3,0).

For September 12

Section 1.3 Vectors
  • To read : All
  • Be sure to understand : The section "What is a vector?"

Email Subject Line : Math 236 9/12 Your Name

Reading Questions :

  1. What are the two quantities associated with a vector?
  2. Find the unit vector in the direction of the vector v=(12,-5).

For September 14

Section 1.4 Vector-valued functions, derivatives, and integrals
  • To read : Through Example 3
  • Be sure to understand : The section "Derivatives of vector-valued functions"

Email Subject Line : Math 236 9/14 Your Name

Reading Questions :

  1. Consider the line in 3-space that contains the point (1,2,3) and has direction (2,1,3). Give a vector valued equation for this line.
  2. Explain why the velocity of an object moving in 2-space or 3-space is a vector rather than a scalar.

For September 17

Section 1.4 Vector-valued functions, derivatives, and integrals
  • To read : Finish the section
  • Be sure to understand : The section "Interpreting the difference quotient"

Email Subject Line : Math 236 9/17 Your Name

Reading Question :

    Use vector derivatives to find a vector equation for the line tangent to the unit circle at (1/2, sqrt(3)/2).

For September 19

Section 1.5 Derivatives, antiderivatives, and motion
  • To read : All
  • Be sure to understand : The section "Speed and arclength" and Example 9

Email Subject Line : Math 236 9/19 Your Name

Reading Questions Let p(t) = (3t2, 7t + t2) give the position of a particle at time t.

  1. What is the velocity of the particle at time t=5?
  2. What is its speed at time t=5?
  3. Approximately how far has it traveled from time t=1 to t=5?

For September 21

Work on Group Project 1. No Reading Assignment.

For September 24

Section 1.6 The dot product
  • To read : All
  • Be sure to understand : The sections "Geometry of the dot product" and "Projecting one vector onto another"

Email Subject Line : Math 236 9/24 Your Name

Reading Questions :

  1. If u and v are unit vectors, give a geometric interpretation of the dot product of u and v.
  2. Let v=(3,4) and w=(5,2). Find the component of v in the w direction.

For September 26

Section 1.7 Lines and planes in three dimensions
  • To read : All
  • Be sure to understand : The section "Planes"

Email Subject Line : Math 236 9/26 Your Name

Reading Questions :

  1. What information about a line L do you need to determine an equation for the line?
  2. What information about a plane P do you need to determine an equation for the plane?

For September 28

The Big Picture today. No new reading assignment.


Math 236 Home | T. Ratliff's Home

Maintained by Tommy Ratliff, tratliff@wheatonma.edu
Last modified: Monday, August 20, 2001, 7:21 PM