1. Let $I=\int_{0}^{3} e^{-x^{4}} d x$.
(a) Check that Theorem 1 applies, and use this to find an n so that R_{n} approximates I within 10^{-6} of its actual value.
(b) Now use Theorem 2 to find an n so that R_{n} approximates I within 10^{-6} of its actual value.
(c) Use Theorem 3 to find an n so that M_{n} approximates I within 10^{-6} of its actual value. Calculate M_{n} for this value of n.
2. Let $I=\int_{0}^{2} \sqrt{4-x^{2}} d x$.
(a) Check that Theorem 1 applies, and use this to find an n so that L_{n} approximates I within 0.001 of its actual value.
(b) Now try to use use Theorem 2 to find an n so that L_{n} approximates I within 0.001 of its actual value. (Look very closely near $x=2$)
What's happening? Why?
(c) What is the exact value of I ?

Recap for Today

Usually Theorems 2 and 3 give you better error bounds than Theorem 1, but not always.

