Let $I=\int_{-2 \pi / 3}^{\pi / 4} \sin \left(x^{2}\right) d x$.

1. Find n so that L_{n} approximates I within 0.001 of its actual value.
2. Find n so that T_{n} approximates I within 0.001 of its actual value.
3. Find n so that M_{n} approximates I within 0.001 of its actual value.
4. Which would you rather do?

Recap for Today

- The error introduced by T_{n} and M_{n} when approximating $\int_{a}^{b} f(x) d x$ is related to the magnitude of $f^{\prime \prime}(x)$ on $[a, b]$.
- Although it's more work to use Theorem 3, the error introduced by M_{n} and T_{n} is usually less than the error introduced by L_{n} and R_{n}, especially if $f^{\prime \prime}$ is well-behaved on $[a, b]$.

