Recap for Today

- The error introduced by L_n and R_n when approximating $\int_a^b f(x) dx$ is related to the magnitude of f'(x) on [a, b].
- If f is monotone on [a, b], it's usually easiest to use Theorem 1 for the error bounds.
- If f is not monotone, then we can use Theorem 2.

1. Let
$$I = \int_0^{\pi} \sin(x^2) dx$$
.

- (a) How close will L_{500} approximate I? R_{500} ?
- (b) Use L_n to approximate I within 0.001 of its actual value.

2. Let
$$I = \int_{-1}^{2} -2\ln(1+x^2) dx$$
.

- (a) How close will L_{500} approximate I?
- (b) Use R_n to approximate I within 0.001 of its actual value.