Let $I=\int_{0}^{1} e^{-x^{2}} d x$.
Use Theorem 1 to answer the following.

1. How close will L_{5000} approximate $I ? R_{5000}$? T_{5000} ?
2. Find a value of n so that L_{n} approximates I within 0.00001 of the actual value.
3. Repeat \#2 but with T_{n}.

Recap for Today

- Even if we can't find an antiderivative, we can approximate an integral. The goal is to determine how close the approximation is to the actual value of the integral.
- If the $f(x)$ is monotone on $[a, b]$, we can determine how close L_{n}, R_{n} and T_{n} are to $\int_{a}^{b} f(x) d x$ without knowing the exact value of the integral!

