|
Math 101 - Calculus I - Course Policies
Overview
Very few things in this world are constant - Most things change: public opinion;
your annual income; the speed of a car; your eating habits. Calculus is the language
of change. It allows us to describe and predict the behavior of changing
quantities. Our main tool will be the derivative function, f',
which tells us how a function f is changing.
We will begin the semester by reviewing some material on functions, graphs, and
logarithmic, exponential and trigonometric functions. Next, we will study the
very rich graphical relationship between a function f and its derivative
f'.
We will then begin the quest for finding algebraic expressions for f'.
For example, if f(x)=e^x sin(x), what is a formula for f'(x)?
We will develop several important tools, called the product rule,
the quotient rule, and the chain rule, that will allow us to calculate
the derivative of almost every function we will encounter. Armed with these
tools, we will be able to tackle several applications, such as finding the
optimal size of a soup can to minimize cost or modeling the growth of a
population and predicting its size in the future.
We will take a brief break from finding derivatives to consider carefully
what it means for a
function to be continuous and what it means for a function to have a
derivative. There are three very important theorems that will come
out of these considerations: the Intermediate Value Theorem, the
Extreme Value Theorem, and the Mean Value Theorem.
Next, we will look at a question that is seemingly unrelated to the
derivative. As a particular example, we will ask, what is the area of the region
that is
bounded by the curve y=sin(x) and the x-axis between x=0 and
x=Pi?
One of the most beautiful connections in mathematics is that this question
is fundamentally related to finding a function whose derivative is sin(x).
Reading the Text and Working with Other Students
Two of the goals of this course are that you learn to read a math text and that
you learn to communicate mathematics with other students. Mathematics
is a very personal discipline that is best learned by \em doing
rather than by observing.
The class will be structured with in-class group work
and some lectures to emphasize particular topics, but the class
meetings are not intended to be a complete encapsulation of the course
material. There will be material in
the text for which you are responsible that we will not cover in class.
You will have a reading assignment for every class meeting, and
it is extremely important that you complete the reading before the
next class meeting!
I will put a copy of each reading assignment on my homepage. Each
assignment will indicate which parts of the section are especially important and which
can be skipped. Each assignment will also have three (or so)
questions that you should be able to answer after you have read the
section. More on this later.
Evaluation
Your final grade will be determined by
3 Exams | 40%
| Differentiation Exam | 10%
| 3 Group Projects | 15%
| Homework | 10%
| Reading Quizzes | 5%
| Tuesday Worksheets | 5%
|
Group Projects
There will be three group projects assigned during the semester
where you will work in groups of three. You will
have one class period to work together on the project, and your
written report will be due a week or so later
(see the syllabus for specific dates).
One of the main goals of the projects is that you learn to communicate
mathematics precisely, both verbally with your group and in
writing. The reports should be written in complete sentences explaining
the results and major ideas involved.
You may divide the writing of the report in whatever way is
agreeable to the group, but everyone should completely understand
the whole of the paper. Further, each member should proofread the
entire paper for consistency and typos.
All members of the group will receive the same grade on the project.
I will ask each person to give a confidential evaluation of the contributions
made by all members of the group. In extreme circumstances,
I reserve the right to give different grades to members of the same group.
I will give you a handout that explains my expectations for the
written reports in more detail.
Homework
Homework will be collected approximately 20 times during the semester
(see the syllabus for the specific days that homework is due). I will grade
approximately three problems from each assignment, with each problem
graded fairly leniently and assigned a score of 0, 1, or Section 2. The most important
aspect of the homework is that you make an effort on every problem!
Here are a few guidelines for the presentation of your homework.
If you do not follow these, I reserve the right to return your homework ungraded!
- Your writing must be clear and legible.
- Your homework should be well-written,
using complete sentences to justify your results.
A list of answers without explanation is not acceptable.
- Here is a good rule of thumb to follow when writing up your
homework:
Write your solutions so that you could hand them to a student in a
different section of Calc I and they could understand your
explanation.
- If you write in pen, there should be no scratch-outs.
- Do not turn in paper torn from a spiral notebook with ragged
edges.
- Label each page with the section number, and write down the
problem number
You may do your homework alone, but it is much better if you work
in groups of two or three but no larger. Each group hands in one
paper, and everyone in the group gets the same grade.
On the days that homework is due, I will leave 10 minutes of class to
answer questions on the homework. In order to give you some time to
look over your assignment after you have asked questions, the homework
is due in my office at the end of office hours that day. However, \newline
< B> Late homework is not accepted!! No exceptions!!
You will be allowed to drop two homework assignments at the end of the
semester.
Reading Quizzes
At the beginning of class nearly every Monday, Wednesday and Friday,
you will have a one
question, one minute quiz over the assigned reading. Therefore,
It is extremely important that you arrive at class
on time!!
The question
will be identical to one of the questions given in the reading
assignment. We will grade the quizzes in-class, with each quiz receiving
a score of 0, 1, or Section 2.
You will be allowed to drop three of the reading quizzes.
Tuesday Worksheets
We will meet in the computer lab in the Computing Center on most
Tuesdays, where you will start using the computer algebra system
Maple, although on some Tuesdays we will meet in the regular
classroom. On each Tuesday, you will have a worksheet, either
electronic or paper, that you should be able to finish during the 50
minutes in class.
Class Attendance
Although class attendance is not a specified percentage of your grade,
I will keep a class roll to help me determine borderline grades at the
end of the semester. If you do miss class, you are responsible
for the material that was covered.
Getting Help
Please come see me during my office hours! If you have a conflict
and cannot make my office hours, please call or email me and we can set up
an appointment for another time.
If you want to know check on your grade at any time during the
semester, please ask me and I can give you a rough idea of your
current standing.
Back to the Math 101 Page
|