In my heart of calculus hearts, I think that $\sum_{k=5}^{\infty} \frac{3}{42+k}$

- (a) Converges
- (b) Diverges
- (c) I don't have strong feelings about this series

I can test for the convergence or divergence of $\sum_{k=5}^{\infty} \frac{3}{42+k}$ using

- (a) The *n*th Term Test
- (b) The p-test
- (c) Direct Comparison Test
- (d) Limit Comparison Test
- (e) Integral Test

In my heart of calculus hearts, I think that $\sum_{i=2}^{\infty} \frac{j^2}{4^i}$

- (a) Converges
- (b) Diverges
- (c) I don't have strong feelings about this series

Using the Limit Comparison Test to compare

$$\sum_{i=2}^{\infty} \frac{j^2}{4^i} \quad \text{and} \quad \sum \frac{1}{4^i}$$

tells me that

(a)
$$\sum_{i=2}^{\infty} \frac{j^2}{4^{i}}$$
 converges

(b)
$$\sum_{i=2}^{\infty} \frac{j^2}{4^i}$$
 diverges

(c) Nothing about
$$\sum_{j=2}^{\infty} \frac{j^2}{4^j}$$

Using the Limit Comparison Test to compare

$$\sum_{i=2}^{\infty} \frac{j^2}{4^i} \quad \text{and} \quad \sum \frac{1}{2^i}$$

tells me that

- (a) $\sum_{i=2}^{\infty} \frac{j^2}{4^{i}}$ converges
- (b) $\sum_{i=2}^{\infty} \frac{j^2}{4^i}$ diverges
- (c) Nothing about $\sum_{j=2}^{\infty} \frac{j^2}{4^j}$