Math 202 Cryptography 1 ## PROBLEM SET #4 ## Supplemental Problems 1. Use the values of A_0, A_1, \ldots, A_{15} given in the Week 4 Tutorial Problem 2. Compute the value of the bytes C_1, C_7 , and C_{14} from the MixColumns layer. You can use Table 4.3 to find the output from the *S*-box in the Byte Substitution layer. 2. The purpose of this problem is for you to explore the diffusion properties of AES. For this problem, use the AES calculator at http://testprotect.com/appendix/AEScalc with a key of k = E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF - (c) Notice we changed a single bit from x_0 to x_1 . How many bits differ in y_0 and y_1 ? You can certainly do this by hand, but you might also find the *Mathematica* notebook posted useful. - (d) Repeat this process for at least 10 other values of plaintext x_i that differ from x_0 by a single bit. Build a table where each row gives x_i , y_i , and the number of bits that y_i differs from y_0 . - (e) Discuss your results. Do you think AES does a good job of diffusion? - 3. This problem involves the *Playfair cipher* with key k = "TOPHBEIFONG". You will need to do some research to understand how the cipher works. In this implementation, we are replacing 'J' by 'I'. You receive the encrypted message EA DZ SV QT OB FM EQ IB FG NB TQ IF TA TG YF AF MH QP VN LP HN FO YZ HP VI SU Decrypt the message. Who said this? Be sure to explain how you decrypted so that someone else can follow, and recreate, your process. T. Ratliff Fall 2020