Announcements

- Jamboards looked pretty good
- Problem Sets are collaborative
 - Should make contact Thursday or Friday to schedule meetings
 - After completing a problem, think about what it tells you before writing up the solution to turn in
 - Opportunity to take advantage of your peers' insights
- Check solutions to Problem Sets
- Exam 1 in two weeks
 More details next week
 Start looking for "Crypto in the news" to submit as part of exam

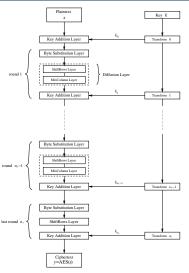


Fig. 4.2 AES encryption block diagram

Details of AES round structure

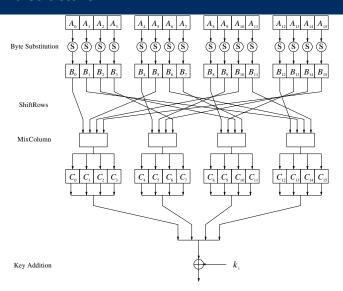
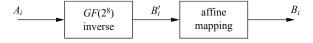
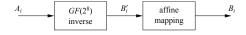



Fig. 4.3 AES round function for rounds $1, 2, \dots, n_r - 1$

The Byte Substitution Layer / AES S-box



where the affine mapping is

$$MB_i' + v \mod 2$$

with matrix M and vector v

The Byte Substitution Layer / AES S-box

where the affine mapping is $MB'_i + v \mod 2$ with

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \mod 2$$

$$\mathbf{B}_{-\mathbf{i}} \qquad \mathbf{M} \qquad \mathbf{B}'_{-\mathbf{i}} \qquad \mathbf{v}$$

If input is $A_i = 2C$, what is the output B_i ? You can use Table 4.2

The ShiftRows Layer

Place output from byte substitution in a matrix

Perform the ShiftRows

-		_		no shift
B_5	B 9	B_{13}	B_1	← one position left shift
B_{10}	B_{14}	B_2	B_6	← two positions left shift
B_{15}	B_3	B_7	B_{11}	\longleftarrow three positions left shift

B_0	<i>B</i> ₅	B ₁₀	B ₁₅	B ₄	B ₉	B ₁₄	<i>B</i> ₃	B ₈	B ₁₃	B_2	B ₇	B ₁₂	B ₁	B ₆	B ₁₁	
-------	-----------------------	-----------------	-----------------	----------------	-----------------------	-----------------	-----------------------	----------------	-----------------	-------	----------------	-----------------	----------------	----------------	-----------------	--

Math 202 Cryptography (T. Ratliff) September 14, 2020

The MixColumns Layer

$$\begin{bmatrix} C_0 & C_4 & C_8 & C_{12} \\ C_1 & C_5 & C_9 & C_{13} \\ C_2 & C_6 & C_{10} & C_{14} \\ C_3 & C_7 & C_{11} & C_{15} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} B_0 & B_4 & B_8 & B_{12} \\ B_5 & B_9 & B_{13} & B_1 \\ B_{10} & B_{14} & B_2 & B_6 \\ B_{15} & B_3 & B_7 & B_{11} \end{bmatrix}$$

Notice that all operations in the matrix multiplication are taking place in $GF(2^8)$

If the output from the Byte Substitution Layer is

What is the output byte C_0 from the MixColumns layer?