1

We're going compute some DSA examples, except with smaller values for p and q.

For the hash function, we'll use SHA3-256. You will want to grab the Mathematica notebook for today to see the syntax for computing the hash value.

- 1. Alice publishes $(p, q, \alpha, \beta) = (241\,553\,623, 13\,033, 52\,824, 238\,101\,207)$
 - (a) Given that we're using smaller values, verify that p, q and α are reasonable choices.
 - (b) Which, if any, of the following are valid DSA signatures? (Don't include the quotation marks when calculating the hash.)

i.
$$(x, (r, s)) = (\text{``Argybargy''}, (5105, 11671))$$

- ii. (x, (r, s)) = ("Pleased to Meet Me", (9543, 3174))
- 2. You want to use DSA to sign the message

"Clam chowder is just hot ocean milk with dead animal croutons"

using values of

$$p = 2738078869$$
, $q = 65323$, and $\alpha = 11208$

- (a) Verify that p, q and α are reasonable choices.
- (b) Use d = 17132 to compute your value for β .
- (c) Use a value of $k_E = 41\,821$ to sign your message.
- 3. When using DSA to sign a message, you compute $r \equiv (\alpha^{k_E} \mod p) \mod q$. Does it matter whether you first reduced mod q and then mod p or reduce in the other order?

In other words, is
$$(\alpha^{k_E} \mod p) \mod q$$
 equal to $(\alpha^{k_E} \mod q) \mod p$?

T. Ratliff Nov 2 & 4, 2020