Announcements

- Exam 2 this week
 - Cheat Sheet due @ 8:00 am tomorrow
 - Exam 2 available on onCourse @ 8:00 am tomorrow
 - · Remember Reference Sheet & Honor Code pledge
 - Major emphasis in grading (and the course!) is quality of explanation of solutions
- · No questions to submit for tomorrow's PCA
- Next week: No Problem Set, WeBWorK due Thursday
- Consider taking Calc II next semester!
 - I'll be glad to chat individually

Definition: The *indefinite integral* of f(x) with respect to x is

$$\int f(x) \ dx = F(x) + c$$

where F(x) is an antiderivative of f(x).

$$\int 3x^2 + x + \pi \ dx =$$

(a)
$$6x + 1$$

(b)
$$x^3 + x^2 + c$$

(c)
$$x^3 + \frac{x^2}{2} + \pi x$$

(d)
$$x^3 + \frac{x^2}{2} + \pi x + c$$

(e)
$$x^3 + x^2 + \pi + c$$

$$\int \frac{1}{x^2} + \cos(x) \ dx =$$

(a)
$$\frac{1}{2x} - \sin(x) + c$$

(b)
$$-\frac{1}{x^3/3} - \sin(x)$$

(c)
$$\frac{1}{x} - \sin(x) + c$$

(d)
$$ln(x^2) + sin(x) + c$$

(e)
$$-\frac{1}{x} + \sin(x) + c$$

$$\int \frac{1}{x} + 3e^x \ dx = \ln(x) + 3e^x + c$$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Ummm...

$$\int 2xe^{-x^2}\ dx = e^{-x^2} + c$$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Ummm...

$$\int 2x\cos(x) - x^2\sin(x) \ dx = x^2\cos(x) + c$$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Ummm...

$$\int \ln(x) \ dx = x \ln(x) - x + c$$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Ummm...

Definition: If f(x) is defined on the interval [a, b], then define

$$\int_a^b f(x) \ dx = \text{ the signed area between } y = f(x) \text{ and the } x\text{-axis over } [a,b]$$

By signed area, we mean that we will consider area below the x-axis as negative.

Example

$$\int_{1}^{3} x - 1 \, dx$$

$$\int_0^1 x - 1 \, dx$$

Example

$$\int_0^3 x - 1 \, dx$$

$$\int_{-2}^2 \sqrt{4-x^2} \, dx$$