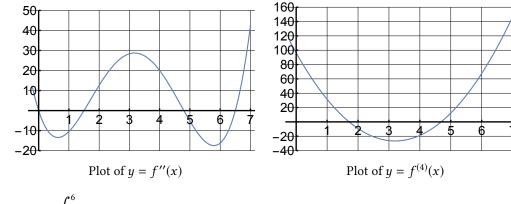

Some Sample Problems for Exam 3

These are only a *few* sample problems to *help* you prepare for the exam. You should also be certain that you completely understand the WeBWorK assignments, Problems Sets, Reading Assignments, in-class work, and your class notes.

- 1. Use a linear approximation of $f(x) = \ln(x)$ at $x_0 = 1$ to approximate $\ln(1.05)$.
- 2. Let $f(x) = e^x$.
 - (a) Find the linear approximation of f(x) at $x_0 = 0$ and use this to approximate *e*.
 - (b) What is the fifth degree Maclaurin polynomial of f(x)? Use it to approximate *e*.
 - (c) Which approximation do you think will be more accurate? Why?

3. If $F(x) = \int_0^x 2t \cos(t^2) dt$, find the equation of the tangent line to y = F(x) at x = 1.

- 4. The graph of y = f(t) is shown below. Let $F(x) = \int_{1}^{x} f(t) dt$.
 - (a) Use a left sum with four subdivisions to approximate F(9).
 - (b) Is F(2) positive or negative?Is F(6) positive or negativeIs F(0) positive or negative?
 - (c) Where is *F* increasing? decreasing?
 - (d) Identify all local maxima and minima of F.
 - (e) Where is *F* concave up? concave down?
 - (f) Which of your answers would change if $F(x) = \int_{x}^{x} f(t) dt$? Why?


- 5. A ball is thrown straight up with an initial velocity of 20 m/sec from the edge of a roof that is 18 meters above ground level.
 - (a) How high will the ball go?
 - (b) How long is the ball in the air before it hits the ground?
- 6. Approximate the integral $\int_0^1 \cos(x^3) dx$ using a Maclaurin polynomial.

Hint: Remember that you can use the Maclaurin polynomial for $\cos(x)$ to find the Maclaurin polynomial for $\cos(x^3)$

Math 101

7. What is the difference between a definite integral and an indefinite integral?

8. The graphs of f'' and $f^{(4)}$ are shown below.

- (a) Let $I = \int_{2}^{6} f(t) dt$. Compute an upper bound on the error $|I T_{42}|$. (b) Let $I = \int_{2}^{5} f(t) dt$. Find the smallest value of *n* such that $|I - S_n| \le 0.005$.
- (c) Let $I = \int_{5}^{6} f(t) dt$. Will T_n overestimate or underestimate *I*? Explain.