1. Evaluate the following integrals:
(a) $\int x \sqrt{x-1} d x \quad(u=x-1)$
(b) $\int x \tan \left(x^{2}\right) d x$
(c) $\int \frac{1}{\sqrt{x}(\sqrt{x}+2)^{3}} d x$
2. Find the area of each region specified.
(a) Between $y=2 \sin (x) \cos (x)+x$ and the x-axis for $0 \leq x \leq \pi$
(b) Between $y=\frac{x}{2+x^{2}}$ and the x-axis for $0 \leq x \leq 3$
(c) Between $y=\frac{x}{2+x}$ and the x-axis for $0 \leq x \leq 3$
(d) Bounded by $y=x^{3}-x$ and $y=3 x$
3. Find the average value of each function on the specified interval
(a) $f(x)=x \sin \left(x^{2}\right)$ on $[0, \sqrt{\pi}]$
(b) $f(x)=\cos (x)^{4} \sin (x)$ on $[0, \pi]$
4. Evaluate the following definite integrals. If you cannot find an antiderivative, then estimate the value of the integral.
(a) $\int_{-1}^{1} \sin (x) e^{x^{2}} d x$ (Hint: Look at the graph)
(b) $\int_{-1}^{0} e^{x^{2}} d x$ (Hint: Think Taylor polynomials)
