We cannot find an antiderivative for $\sin \left(x^{2}\right)$, but there are a couple of ways we can approach finding an approximation for

$$
\mathcal{I}=\int_{0}^{1} \sin \left(x^{2}\right) d x
$$

1. Plot $y=\sin \left(x^{2}\right)$,
(a) Calculate L_{10} and R_{10}.
(b) Will L_{10} overestimate or underestimate \mathcal{I} ? How about R_{10} ?
(c) How accurate is your approximation to the exact value of \mathcal{I} ?
2. Find the Taylor Polynomial of degree 7 for $\sin (x)$ (Check your notes from March 29)
(a) Use this to find a Taylor polynomial for $\sin \left(x^{2}\right)$.
(b) Substitute this Taylor polynomial into the integral and evaluate to approximate \mathcal{I}.
3. Find the area of the region shaded in blue, bounded by the graphs of $y=\sin (x)$ and $y=\cos (x)$

4. Find the area of the region bounded by the graphs of $y=x^{3}$ and $y=x^{2}+x$

