We cannot find an antiderivative for $sin(x^2)$, but there are a couple of ways we can approach finding an approximation for

$$\mathcal{I} = \int_0^1 \sin(x^2) \, dx$$

- 1. Plot $y = \sin(x^2)$,
 - (a) Calculate L_{10} and R_{10} .
 - (b) Will L_{10} overestimate or underestimate \mathcal{I} ? How about R_{10} ?
 - (c) How accurate is your approximation to the exact value of \mathcal{I} ?
- 2. Find the Taylor Polynomial of degree 7 for sin(x) (Check your notes from March 29)
 - (a) Use this to find a Taylor polynomial for $sin(x^2)$.
 - (b) Substitute this Taylor polynomial into the integral and evaluate to approximate \mathcal{I} .

1. Find the area of the region shaded in blue, bounded by the graphs of y = sin(x) and y = cos(x)

2. Find the area of the region bounded by the graphs of $y = x^3$ and $y = x^2 + x$

