These are only a few sample problems to help you prepare for the exam. You should also be certain that you completely understand the WeBWorK assignments, Problems Sets, Reading Assignments, in-class work, and your class notes.

- 1. If $F(x) = \int_0^x \frac{t}{\sqrt{1-t^2}} dt$, find the equation of the tangent line to y = F(x) at $x = \frac{1}{2}$.
- 2. The graph of y = f(t) is shown below. Let a = 1 and $F(x) = \int_a^x f(t) \ dt$.
 - (a) Use a left sum with four subdivisions to approximate F(9).
 - (b) Is F(2) positive or negative? Is F(0) positive or negative?
 - (c) Where is F increasing? decreasing?
 - (d) Identify all local maxima and minima of F.
 - (e) Where is F concave up? concave down?
 - (f) Use this information to sketch a graph of y = F(x).
 - (g) How would your graph change if a = 5?

3. Find the area of the region bounded by the graphs $y = \tan(x+2) + 5$ and y = -x + 2 from x = 0 to x = 2.

- 4. A ball is thrown straight up with an initial velocity of 100 ft/sec from the edge of a roof that is 58 feet above ground level.
 - (a) How high will the ball go?
 - (b) How long is the ball in the air before it hits the ground?

T. Ratliff Spring 2017

- 5. Approximate the integral $\int_0^1 \cos(x^3) dx$ using a Taylor polynomial.
- 6. Find the average value of $g(x) = \frac{3x+1}{3x^2+2x+1}$ over the interval [-1,2].
- 7. A car is traveling at the rate of 30 m/sec when the brakes are applied. The car begins decelerating at a constant rate of 4.5 m/sec^2 .
 - (a) How many second elapse before the car comes to rest?
 - (b) How far does the car travel before it stops?

T. Ratliff
Spring 2017