These are only a few sample problems to help you prepare for the exam. You should also be certain that you completely understand the WeBWorK assignments, Problems Sets, Reading Assignments, in-class work, and your class notes.

1. The graphs of f, f', and f'' are shown below on the same set of axes. Label each on the graph.

- 2. Suppose that the graph labeled C on the left graph in #1 is the graph of g'(x).
 - (a) Is g concave up or concave down at x = -2?
 - (b) Find all critical points of g and label them as local maxima, local minima, or neither.
 - (c) If g(-1) = 3, could g(1) = 2?
- 3. Suppose that the graph labeled C on the right graph in #1 is the graph of h''(x).
 - (a) If x = -2 is a critical point of h, what does the Second Derivative Test tell you about this point?
 - (b) If x = 0 is a critical point of h, what does the Second Derivative Test tell you about this point?
- 4. Use a linear approximation to approximate ln(1.05).
- 5. Find all critical points of $f(x) = 3x^5 25x^3 + 7$ and classify them as local maxima, local minima, or neither.
- 6. A wire 2 meters long is cut into two pieces that will be used as frames for stained glass decorations. One piece is bent into a square and the other piece is bent into a circle.
 - (a) To reduce storage, where should the wire be cut to minimize the total area of both figures? What will the dimensions of the decorations be?
 - (b) Where should the wire be cut to maximize the total area? What will the dimensions be in this case?
- 7. You will, of course, want to be fluent in finding derivatives.

T. Ratliff Spring 2017