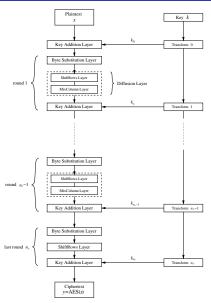
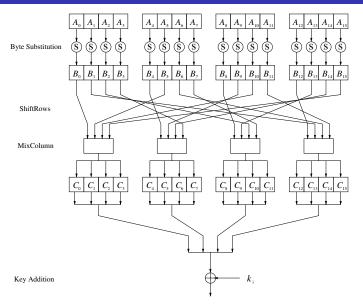
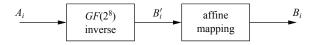
Recall the general structure of AES


Fig. 4.2 AES encryption block diagram

Details of AES round structure

Fig. 4.3 AES round function for rounds $1, 2, ..., n_r - 1$

Format of AES S-box

where the affine mapping is

$$MB_i' + v \mod 2$$

where the matrix M and vector v are

3/9

The ShiftRows Layer

Place output from byte substitution in a matrix

B_0	B_4	B_8	B_{12}
B_1	B_5	<i>B</i> ₉	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	B_7	B_{11}	B_{15}

Perform the ShiftRows

B_0	B_4	B_8	B_{12}	no shift
				\leftarrow one position left shift
B_{10}	B_{14}	B_2	B_6	← two positions left shift
B_{15}	B_3	B_7	B_{11}	← three positions left shift

Compare to diagram

The MixColumns Layer

$$\begin{bmatrix} C_0 & C_4 & C_8 & C_{12} \\ C_1 & C_5 & C_9 & C_{13} \\ C_2 & C_6 & C_{10} & C_{14} \\ C_3 & C_7 & C_{11} & C_{15} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} B_0 & B_4 & B_8 & B_{12} \\ B_5 & B_9 & B_{13} & B_1 \\ B_{10} & B_{14} & B_2 & B_6 \\ B_{15} & B_3 & B_7 & B_{11} \end{bmatrix}$$

Notice that all operations in the matrix multiplication are taking place in $GF(2^8)$

5/9

Diffusion Layer Example

Suppose output of byte substitution layer is

													B ₁₃		
5E	62	1F	03	77	4E	39	06	48	2A	35	2C	52	01	11	20

ShiftRows:

$$\begin{bmatrix} 5E & 77 & 48 & 52 \\ 62 & 4E & 2A & 01 \\ 1F & 39 & 35 & 11 \\ 03 & 06 & 2C & 20 \end{bmatrix} \Rightarrow \begin{bmatrix} 5E & 77 & 48 & 52 \\ 4E & 2A & 01 & 62 \\ 35 & 11 & 1F & 39 \\ 20 & 03 & 06 & 2C \end{bmatrix}$$

MixColumns:

$$\begin{bmatrix} C_0 & C_4 & C_8 & C_{12} \\ C_1 & C_5 & C_9 & C_{13} \\ C_2 & C_6 & C_{10} & C_{14} \\ C_3 & C_7 & C_{11} & C_{15} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} 5E & 77 & 48 & 52 \\ 4E & 2A & 01 & 62 \\ 35 & 11 & 1F & 39 \\ 20 & 03 & 06 & 2C \end{bmatrix}$$

The 128-bit AES Key Schedule

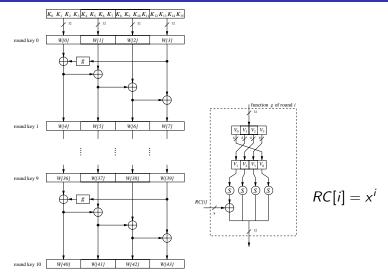


Fig. 4.5 AES key schedule for 128-bit key size

Need to generate 44 words of 32-bits each

The 192-bit AES Key Schedule

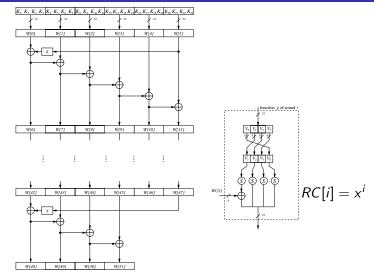


Fig. 4.6 AES key schedule for 192-bit key sizes

Need to generate 52 words of 32-bits each

The 256-bit AES Key Schedule

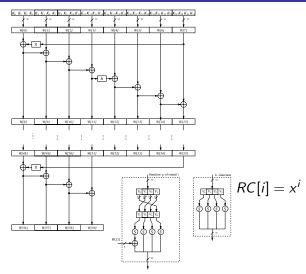


Fig. 4.7 AES key schedule for 256-bit key size

Need to generate 60 words of 32-bits each