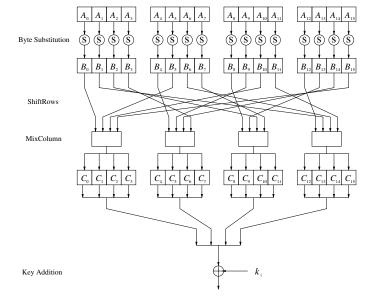
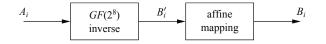

Recall the general structure of AES



T. Ratliff (Wheaton College)

September 23, 2016 1 / 7


• • • • • • • • • • • •

Details of AES round structure

Fig. 4.3 AES round function for rounds $1, 2, \ldots, n_r - 1$

э

where the affine mapping is

$$MB'_i + v \mod 2$$

where the matrix M and vector v are

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \end{bmatrix} \begin{pmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \mod 2$$

Image: A matrix

Place output from byte substitution in a matrix

B_0	B_4	B_8	<i>B</i> ₁₂
B_1	B_5	B 9	<i>B</i> ₁₃
B_2	B_6	B_{10}	B_{14}
B_3	B_7	<i>B</i> ₁₁	<i>B</i> ₁₅

Perform the ShiftRows

B_0	B_4	B_8	<i>B</i> ₁₂	no shift
B_5	B 9	<i>B</i> ₁₃	B_1	\leftarrow one position left shift
B_{10}	B_{14}	B_2	<i>B</i> ₆	\leftarrow two positions left shift
B_{15}	<i>B</i> ₃	B_7	<i>B</i> ₁₁	\leftarrow three positions left shift

Compare to diagram \overline{B}_{13} B_{10} B_{15} B_{14} B_{11} B_0 B_5 B_4 B_9 B_3 B_8 B_2 B_7 B_{12} B_1 B_6

$$\begin{bmatrix} C_0 & C_4 & C_8 & C_{12} \\ C_1 & C_5 & C_9 & C_{13} \\ C_2 & C_6 & C_{10} & C_{14} \\ C_3 & C_7 & C_{11} & C_{15} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} B_0 & B_4 & B_8 & B_{12} \\ B_5 & B_9 & B_{13} & B_1 \\ B_{10} & B_{14} & B_2 & B_6 \\ B_{15} & B_3 & B_7 & B_{11} \end{bmatrix}$$

Notice that all operations in the matrix multiplication are taking place in $GF(2^8)$

AES S-box is usually implemented through a lookup table

Table 4.3 AES S-Box: Substitution values in hexadecimal notation for input byte (*xy*)

										y							
		0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
х	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B 8	14	DE	5E	0B	DB
	А	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A6	B 4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B 0	54	BB	16

The AES Key Schedule

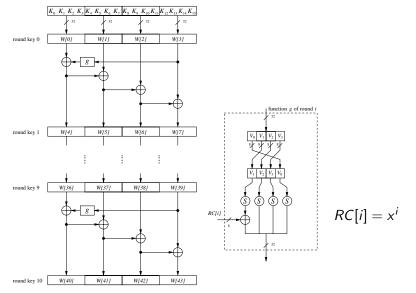


Fig. 4.5 AES key schedule for 128-bit key size