These are only a \underline{few} sample problems to help you prepare for the exam. You should also be certain that you completely understand the WebWork assignments, Problems Sets, in-class work, and your class notes.

1. Find the value of the following sums by hand

(a)
$$\sum_{k=42}^{\infty} \frac{1}{4^k}$$
 (b) $\sum_{k=0}^{326} \left(\frac{3}{7}\right)^k$

2. Determine if the following sequences converge or diverge. If the sequence converges, find the limit.

(a)
$$\left\{\frac{\ln(k)}{\sqrt[3]{k+1}}\right\}_{k=1}^{\infty}$$

(b)
$$\{a_k\}_{k=1}^{\infty}$$
 where $a_k = \int_1^k \frac{1}{1+x^2} dx$

- 3. (a) Is it possible that the terms of a series converge but the partial sums diverge? Explain.
 - (b) Can the partial sums converge but the terms diverge? Explain.
- 4. Show that the following series converge. How accurately does S_{75} approximate the exact value of the series?

(a)
$$\sum_{k=6}^{\infty} (-1)^k \frac{17}{k! + k^2}$$
 (b) $\sum_{k=1}^{\infty} 2k^3 e^{-k^2}$

5. Do the following series converge or diverge? Be sure to justify your answer by giving reference to the appropriate theorems and/or tests.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{\pi n - 1}$$

(b)
$$\sum_{k=10}^{\infty} \frac{3}{4k-2}$$

(c)
$$\sum_{k=3}^{\infty} \frac{2k}{4k^8 + 7k^2 + 6}$$

6. Let
$$\mathcal{I} = \int_0^1 \cos(x^2) \, dx$$
.

- (a) Calculate \mathcal{I} accurate within 0.001 by hand without the use of a calculator.
- (b) Find a value of n such that M_n approximates \mathcal{I} accurate within 0.001. It may be useful to know that the absolute value of the second derivative of $\cos(x^2)$ is less than 4 on the interval [0,1].
- 7. Determine the exact values of the following series.

 It may be helpful to write out a few terms of the series to try to identify the pattern.

(a)
$$\sum_{k=0}^{\infty} \frac{1}{3^k k!}$$
 (b) $\sum_{k=0}^{\infty} (-1)^k \frac{(\sqrt{3})^{2k+1}}{2k+1}$

T. Ratliff Spring 2014