These are only a \underline{few} sample problems to help you prepare for the exam. You should also be certain that you completely understand the WebWork assignments, Problems Sets, in-class work, and your class notes.

- 1. You will certainly want to review all of the antidifferentiation problems from the homework and in-class work.
- 2. The graphs of f' and f'' are shown below.

Plot of f'(x)

Plot of f''(x)

- (a) Let $I = \int_2^6 f(t) dt$. Compute an upper bound on the error $|I M_{42}|$.
- (b) Let $I = \int_{1}^{4} f(t) dt$. Find the smallest value of n such that $|I T_n| \le 0.005$. Do the same for M_n .
- (c) Let $I = \int_5^6 f(t) dt$. Will L_n overestimate or underestimate I? How about R_n , M_n , T_n ? Explain.
- 3. Carefully explain why $\frac{d}{dx}(\arctan(x)) = \frac{1}{1+x^2}$.
- 4. Sketch the region bounded by the graphs $y = \sqrt{8x}$ and $y = x^2$. Find the volume of the solid formed when the region is rotated about
 - (a) The x-axis
 - (b) The horizontal line y = 5
- 5. Show that the improper integral $\int_1^\infty e^{-x}x\ dx$ converges and find its exact value.
- 6. The base of a certain solid is the area in the xy-plane bounded to the left by the parabola $x = 9y^2$ and to the right by the line x = 18. The cross sections perpendicular to the x axis are squares. Find the volume of the solid.

- 7. Do the following integrals converge or diverge? You do not need to find the values of the convergent integrals.
 - (a) $\int_2^\infty \frac{x}{x^2 2} \, dx$
 - (b) $\int_0^\infty \frac{1}{x^4 + \sqrt[3]{x}} dx$

T. Ratliff Spring 2014