1. For each transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, find the corresponding matrix $A$.
(a) $T$ rotates by $\frac{\pi}{3}$ counter-clockwise and then reflects over the line $y=x$
(b) $T$ reflects over the line $y=x$ and then rotates by $\frac{\pi}{3}$ counter-clockwise
(c) What is the image of $\mathbf{x}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ under each transformation?
2. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ 3 & 4\end{array}\right]$, and $C=\left[\begin{array}{ll}2 & -4 \\ 3 & -6\end{array}\right]$
(a) Compute $A C$ and $B C$
(b) What interesting property of matrix multiplication does this example demonstrate?
