For each transformation T, find the corresponding matrix A. Is T one-one? onto?

1. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ stretches vertically away from the x-axis by a factor of 2
2. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates by $\frac{\pi}{3}$ counter-clockwise and then reflects across the x-axis
3. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates by $\frac{\pi}{4}$ clockwise and then stretches horizontally away from the y-axis by a factor of 3
4. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ projects onto the $y z$-plane
5. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ rotates clockwise by $\frac{\pi}{2}$ about the x-axis
6. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ embeds \mathbb{R}^{2} into the $x y$-plane in \mathbb{R}^{3}
