For each transformation T, find the corresponding matrix A. Is T one-one? onto?

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^2$ stretches vertically away from the x-axis by a factor of 2
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates by $\frac{\pi}{3}$ counter-clockwise and then reflects across the x-axis
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates by $\frac{\pi}{4}$ clockwise and then stretches horizontally away from the *y*-axis by a factor of 3
- 4. $T: \mathbb{R}^3 \to \mathbb{R}^3$ projects onto the *yz*-plane
- 5. $T: \mathbb{R}^3 \to \mathbb{R}^3$ rotates clockwise by $\frac{\pi}{2}$ about the x-axis
- 6. $T: \mathbb{R}^2 \to \mathbb{R}^3$ embeds \mathbb{R}^2 into the xy-plane in \mathbb{R}^3

