Let T be the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$.

Let $\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
For each matrix A,
(a) Find $T\left(\mathbf{e}_{\mathbf{1}}\right), T\left(\mathbf{e}_{\mathbf{2}}\right)$, and $T(\mathbf{u})$
(b) Plot these vectors in \mathbb{R}^{2}
(c) Give a geometric description of T.

$$
\text { 1. } A=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \quad \text { 2. } A=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right] \quad \text { 3. } A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

