## Answer True / False

Let $\begin{aligned} & \mathbf{v}_{\mathbf{1}}=(1,3,18,2) \\ & \mathbf{v}_{\mathbf{2}}=(2,-1,9,0) \\ & \mathbf{v}_{\mathbf{3}}=(3,2,-4,1) \\ & \mathbf{v}_{\mathbf{4}}=(4,7,1,3)\end{aligned} \quad$ and $\quad A=\left[\begin{array}{rrr}1 & 3 & 2 \\ -2 & 1 & 4 \\ 6 & 2 & 1 \\ 5 & -17 & 32\end{array}\right]$

1. The vectors $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ span $\mathbb{R}^{4}$
2. The columns of $A$ span $\mathbb{R}^{4}$
3. The equation $B \mathbf{x}=\mathbf{b}$ has a unique solution where $B=\left[\begin{array}{llll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}} & \mathbf{v}_{\mathbf{4}}\end{array}\right]$ and $\mathbf{b}=\left(72,-128, \pi, e^{-411}\right)$
4. There exists $\mathbf{b} \in \mathbb{R}^{4}$ such that $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
