1. Let $\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \mathbf{b}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{b}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{3}\right\}$
(a) Show that \mathcal{B} is a basis for \mathbb{R}^{3}
(b) Find the \mathcal{B}-coordinates for the vectors $\mathbf{x}=\left[\begin{array}{r}-1 \\ 4 \\ 2\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{r}6 \\ 2 \\ -1\end{array}\right]$

$$
p_{1}(t)=2+t
$$

2. Let $\quad p_{2}(t)=1+t \quad$ and $\mathcal{B}=\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\}$

$$
p_{3}(t)=1+t+t^{2}
$$

(a) Show that \mathcal{B} is a basis for \mathbb{P}_{2}
(b) Find the \mathcal{B}-coordinates for the polynomials $q(t)=-1+4 t+2 t^{2}$ and

$$
r(t)=6+2 t-t^{2}
$$

