1. Let
$$\mathbf{b_1} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$$
, $\mathbf{b_2} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}$
(a) Show that \mathcal{B} is a basis for \mathbb{R}^3
(b) Find the \mathcal{B} -coordinates for the vectors $\mathbf{x} = \begin{bmatrix} -1\\4\\2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} 6\\2\\-1 \end{bmatrix}$
2. Let $\begin{array}{c} p_1(t) = 2 + t\\ p_2(t) = 1 + t\\ p_3(t) = 1 + t + t^2 \end{array}$ and $\mathcal{B} = \{p_1(t), p_2(t), p_3(t)\}$

(a) Show that \mathcal{B} is a basis for \mathbb{P}_2

(b) Find the \mathcal{B} -coordinates for the polynomials $q(t) = -1 + 4t + 2t^2$ and $r(t) = 6 + 2t - t^2$