A vector space is a nonempty set of objects $V$, called vectors, which have two operations defined: addition of vectors and multiplication by scalars (real numbers), subject to the ten axioms listed below. The axioms must hold for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and for all scalars $c$ and $d$.

1. $\mathbf{u}+\mathbf{v} \in V$
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There exists a vector $\mathbf{0} \in V$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. For all $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c u \in V$
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
9. $c(d \mathbf{u})=(c d) \mathbf{u}$
10. $\mathbf{1 u}=\mathbf{u}$
11. Let $H=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \geq 0, y \geq 0\right\}$ be the first quadrant in $\mathbb{R}^{2}$.

Show that $H$ is not a subspace of $\mathbb{R}^{2}$ by finding a specific vector $\mathbf{u} \in H$ and a specific scalar $c$ such that $c u \notin H$.
2. Let $H=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x \cdot y \geq 0\right\}$ be the union of the first and third quadrants in $\mathbb{R}^{2}$.

Show that $H$ is not a subspace of $\mathbb{R}^{2}$ by finding specific vectors $\mathbf{u}, \mathbf{v} \in H$ such that $\mathbf{u}+\mathbf{v} \notin H$.

