Let
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 0 \\ 3 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

- 1. Show that $A\mathbf{x} = \mathbf{b}$ is inconsistent
- 2. (a) Use Mathematica to find an orthogonal basis for col(A)
 - (b) Use the Orthogonal Decomposition Theorem to find $\hat{\mathbf{b}}$, the projection of \mathbf{b} onto $\operatorname{col}(A)$
 - (c) Verify that $\mathbf{z} = \mathbf{b} \hat{\mathbf{b}}$ is orthogonal to both columns of A.

3. Solve $A\mathbf{x} = \mathbf{\hat{b}}$