

1. Find a vector $\mathbf{x}$ in $\mathbb{R}^{3}$ that is orthogonal to $\mathbf{u}_{\mathbf{1}}$.
2. Find a vector $\mathbf{y}$ that is orthogonal to both $\mathbf{u}_{1}$ and $\mathbf{u}_{2}$.
3. Find all vectors $\mathbf{z}$ in $\mathbb{R}^{3}$ that are orthogonal to $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}$, and $\mathbf{u}_{\mathbf{3}}$.
4. Let $A$ be the matrix formed by putting $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ in the rows of $A$
(a) How are the vectors $\mathbf{z}$ from $\# 3$ related to $\operatorname{row}(A)$ ?
(b) In which fundamental subspace of $A$ do the vectors $\mathbf{z}$ from $\# 3$ lie?
