Let
$$\mathbf{u_1}=\begin{bmatrix}1\\2\\3\end{bmatrix}$$
, $\mathbf{u_2}=\begin{bmatrix}3\\0\\1\end{bmatrix}$, and $\mathbf{u_3}=\begin{bmatrix}1\\-1\\-1\end{bmatrix}$

- 1. Find a vector \mathbf{x} in \mathbb{R}^3 that is orthogonal to $\mathbf{u_1}$.
- 2. Find a vector \mathbf{y} that is orthogonal to both $\mathbf{u_1}$ and $\mathbf{u_2}$.
- 3. Find all vectors \mathbf{z} in \mathbb{R}^3 that are orthogonal to $\mathbf{u_1}$, $\mathbf{u_2}$, and $\mathbf{u_3}$.
- 4. Let A be the matrix formed by putting $\mathbf{u_1}$, $\mathbf{u_2}$, $\mathbf{u_3}$ in the rows of A
 - (a) How are the vectors \mathbf{z} from #3 related to row(A)?
 - (b) In which fundamental subspace of A do the vectors **z** from #3 lie?