Recall Exercise 1.2.34, pg 23

In a wind tunnel experiment, the force on a projectile due to air resistance was measured at different velocities:

Velocity $(100 \mathrm{ft} / \mathrm{sec})$	0	2	4	6	8	10
Force $(100 \mathrm{lb})$	0	2.9	14.8	39.6	74.3	119.0

Find an interpolating polynomial for these data and estimate the force on the projectile when the projectile is traveling at $750 \mathrm{ft} / \mathrm{sec}$.

$$
\text { Use } p(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5} .
$$

What happens if you try to use a polynomial of degree less than 5 ?

Recall Exercise 1.2.34, pg 23

In a wind tunnel experiment, the force on a projectile due to air resistance was measured at different velocities:

Velocity $(100 \mathrm{ft} / \mathrm{sec})$	0	2	4	6	8	10
Force $(100 \mathrm{lb})$	0	2.9	14.8	39.6	74.3	119.0

Find an interpolating polynomial for these data and estimate the force on the projectile when the projectile is traveling at $750 \mathrm{ft} / \mathrm{sec}$.

Use $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}$.
What happens if you try to use a polynomial of degree less than 5 ?

1. Find the least-squares quartic that best fits the data.
2. Find the least-squares line that best fits the data.
