- 1. Let *R* be the region bounded by $y = \ln(x)$ and the *x*-axis with $1 \le x \le e^2$. Find the volume when *R* is rotated about
 - a. the y-axis using shells
 - b. the y-axis using washers
 - c. the x-axis using disks
 - d. the x-axis using shells
- 2. Compute the arc length of each curve

a.
$$y = \sqrt{1 - x^2}, -1 \le x \le 1$$

b. $y = 3x + 1, 1 \le x \le 2$

3. Set up the integral that gives the area of the surface formed when the graph of $y = \arctan(x)$, $0 \le x \le 1$ is rotated about the x-axis.

4. Let
$$I = \int_{1}^{\infty} \frac{\pi}{x^3 + 2x + 7} dx$$

a. Show that *I* converges
b. How closely does the definite integral $I_1 = \int_{1}^{7} \frac{\pi}{x^3 + 2x + 7} dx$
approximate *I*?

c. Find a definite integral that approximates I accurate with 0.005

5. Find the exact value of
$$\int_{1/2}^{\infty} \frac{\arctan(2x)}{1+4x^2} dx$$

000

(日) (同) (三) (三)