1. Let $R$ be the region bounded by $y=\ln (x)$ and the $x$-axis with $1 \leq x \leq e^{2}$. Find the volume when $R$ is rotated about
a. the $y$-axis using shells
b. the $y$-axis using washers
c. the $x$-axis using disks
d. the $x$-axis using shells
2. Compute the arc length of each curve
a. $y=\sqrt{1-x^{2}},-1 \leq x \leq 1$
b. $y=3 x+1,1 \leq x \leq 2$
3. Set up the integral that gives the area of the surface formed when the graph of $y=\arctan (x), 0 \leq x \leq 1$ is rotated about the $x$-axis.
4. Let $I=\int_{1}^{\infty} \frac{\pi}{x^{3}+2 x+7} d x$
a. Show that $I$ converges
b. How closely does the definite integral $I_{1}=\int_{1}^{7} \frac{\pi}{x^{3}+2 x+7} d x$ approximate I?
c. Find a definite integral that approximates / accurate with 0.005
5. Find the exact value of $\int_{1 / 2}^{\infty} \frac{\arctan (2 x)}{1+4 x^{2}} d x$
