Let
$$\mathcal{I} = \int_{-\pi}^{\pi} e^{\sin(x)} dx$$
.

Approximate ${\mathcal I}$ accurate within

- 1. 0.001 using a trapezoid sum
- 2. 0.0001 using a midpoint sum

Let
$$\mathcal{I} = \int_{-1}^{1} x \sin(x^3) dx$$

- 1. Plot the integrand to verify that it is concave up over the interval of integration.
- 2. Will M_n overestimate or underestimate \mathcal{I} ? How about T_n ?
- 3. Calculate M_{100} and T_{100} .
- 4. Use # 3 to determine how close T_{100} is to the actual value of \mathcal{I} .
- 5. What does Theorem 7.1 tell you about $|\mathcal{I} \mathcal{T}_{100}|$?
- 6. Compare your answers to the last two questions. Explain.