Let $$\mathcal{I} = \int_{-\pi}^{\pi} e^{\sin(x)} dx$$. Approximate ${\mathcal I}$ accurate within - 1. 0.001 using a trapezoid sum - 2. 0.0001 using a midpoint sum Let $$\mathcal{I} = \int_{-1}^{1} x \sin(x^3) dx$$ - 1. Plot the integrand to verify that it is concave up over the interval of integration. - 2. Will M_n overestimate or underestimate \mathcal{I} ? How about T_n ? - 3. Calculate M_{100} and T_{100} . - 4. Use # 3 to determine how close T_{100} is to the actual value of \mathcal{I} . - 5. What does Theorem 7.1 tell you about $|\mathcal{I} \mathcal{T}_{100}|$? - 6. Compare your answers to the last two questions. Explain.