Let $\mathcal{I}=\int_{-\pi}^{\pi} e^{\sin (x)} d x$.
Approximate \mathcal{I} accurate within

1. 0.001 using a trapezoid sum
2. 0.0001 using a midpoint sum

Let $\mathcal{I}=\int_{-1}^{1} x \sin \left(x^{3}\right) d x$

1. Plot the integrand to verify that it is concave up over the interval of integration.
2. Will M_{n} overestimate or underestimate \mathcal{I} ? How about T_{n} ?
3. Calculate M_{100} and T_{100}.
4. Use $\# 3$ to determine how close T_{100} is to the actual value of \mathcal{I}.
5. What does Theorem 7.1 tell you about $\left|\mathcal{I}-T_{100}\right|$?
6. Compare your answers to the last two questions. Explain.
