1. Do the following series converge absolutely, converge conditionally, or diverge? For each convergent series, how closely does S_{50} approximate the value of the series?

$$
\begin{array}{ll}
\text { (a) } \sum_{k=1}^{\infty} \frac{2 k+1}{3^{k}} & \text { (b) } \sum_{j=0}^{\infty}(-1)^{j} \frac{3 j^{3}}{6 j^{3}+7 j} \quad \sum_{k=1}^{\infty} \frac{\cos (k \pi)}{k}
\end{array}
$$

2. Show that the following series converge, and calculate S_{10}, S_{100}, and S_{1000}. What is your guess for the value of the series?

$$
\text { (a) } \sum_{k=0}^{\infty} \frac{1}{k!} \quad \sum_{k=0}^{\infty}(-1)^{k} \frac{4}{2 k+1}
$$

