Why the product rule is true

$$
\begin{aligned}
& =\frac{d}{d x}(f(x) g(x)) \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\frac{f(x) g(x+h)-f(x) g(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\left[\frac{f(x+h)-f(x)}{h}\right] g(x+h)+f(x)\left[\frac{g(x+h)-g(x)}{h}\right]\right) \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

For each function, find its derivative.

1. $f(x)=e^{x} \sin (x)$
2. $f(x)=\ln (x)\left(x^{3}-3\right)$
3. $f(x)=\frac{x+\cos (x)}{x^{2}}$
4. $f(x)=\tan (x)$

Hint: $\tan (x)=\frac{\sin (x)}{\cos (x)}$
5. $f(x)=\frac{3 \ln (x)}{e^{x}}$

